3.326 \(\int \cot ^2(c+d x) \sqrt{a+a \sin (c+d x)} \, dx\)

Optimal. Leaf size=89 \[ \frac{3 a \cos (c+d x)}{d \sqrt{a \sin (c+d x)+a}}-\frac{\cot (c+d x) \sqrt{a \sin (c+d x)+a}}{d}-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{a \sin (c+d x)+a}}\right )}{d} \]

[Out]

-((Sqrt[a]*ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/d) + (3*a*Cos[c + d*x])/(d*Sqrt[a + a*Sin
[c + d*x]]) - (Cot[c + d*x]*Sqrt[a + a*Sin[c + d*x]])/d

________________________________________________________________________________________

Rubi [A]  time = 0.198787, antiderivative size = 89, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.174, Rules used = {2716, 2981, 2773, 206} \[ \frac{3 a \cos (c+d x)}{d \sqrt{a \sin (c+d x)+a}}-\frac{\cot (c+d x) \sqrt{a \sin (c+d x)+a}}{d}-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{a \sin (c+d x)+a}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^2*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

-((Sqrt[a]*ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/d) + (3*a*Cos[c + d*x])/(d*Sqrt[a + a*Sin
[c + d*x]]) - (Cot[c + d*x]*Sqrt[a + a*Sin[c + d*x]])/d

Rule 2716

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)/tan[(e_.) + (f_.)*(x_)]^2, x_Symbol] :> -Simp[(a + b*Sin[e +
f*x])^m/(f*Tan[e + f*x]), x] + Dist[1/a, Int[((a + b*Sin[e + f*x])^m*(b*m - a*(m + 1)*Sin[e + f*x]))/Sin[e + f
*x], x], x] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m - 1/2] &&  !LtQ[m, -1]

Rule 2981

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-2*b*B*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n + 1))/(d*f*(2*n + 3)*Sqr
t[a + b*Sin[e + f*x]]), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rule 2773

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(-2*
b)/f, Subst[Int[1/(b*c + a*d - d*x^2), x], x, (b*Cos[e + f*x])/Sqrt[a + b*Sin[e + f*x]]], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \cot ^2(c+d x) \sqrt{a+a \sin (c+d x)} \, dx &=-\frac{\cot (c+d x) \sqrt{a+a \sin (c+d x)}}{d}+\frac{\int \csc (c+d x) \left (\frac{a}{2}-\frac{3}{2} a \sin (c+d x)\right ) \sqrt{a+a \sin (c+d x)} \, dx}{a}\\ &=\frac{3 a \cos (c+d x)}{d \sqrt{a+a \sin (c+d x)}}-\frac{\cot (c+d x) \sqrt{a+a \sin (c+d x)}}{d}+\frac{1}{2} \int \csc (c+d x) \sqrt{a+a \sin (c+d x)} \, dx\\ &=\frac{3 a \cos (c+d x)}{d \sqrt{a+a \sin (c+d x)}}-\frac{\cot (c+d x) \sqrt{a+a \sin (c+d x)}}{d}-\frac{a \operatorname{Subst}\left (\int \frac{1}{a-x^2} \, dx,x,\frac{a \cos (c+d x)}{\sqrt{a+a \sin (c+d x)}}\right )}{d}\\ &=-\frac{\sqrt{a} \tanh ^{-1}\left (\frac{\sqrt{a} \cos (c+d x)}{\sqrt{a+a \sin (c+d x)}}\right )}{d}+\frac{3 a \cos (c+d x)}{d \sqrt{a+a \sin (c+d x)}}-\frac{\cot (c+d x) \sqrt{a+a \sin (c+d x)}}{d}\\ \end{align*}

Mathematica [B]  time = 0.943243, size = 206, normalized size = 2.31 \[ \frac{\csc ^4\left (\frac{1}{2} (c+d x)\right ) \sqrt{a (\sin (c+d x)+1)} \left (4 \sin \left (\frac{1}{2} (c+d x)\right )+2 \sin \left (\frac{3}{2} (c+d x)\right )-4 \cos \left (\frac{1}{2} (c+d x)\right )+2 \cos \left (\frac{3}{2} (c+d x)\right )-\sin (c+d x) \log \left (-\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )+1\right )+\sin (c+d x) \log \left (\sin \left (\frac{1}{2} (c+d x)\right )-\cos \left (\frac{1}{2} (c+d x)\right )+1\right )\right )}{d \left (\cot \left (\frac{1}{2} (c+d x)\right )+1\right ) \left (\csc \left (\frac{1}{4} (c+d x)\right )-\sec \left (\frac{1}{4} (c+d x)\right )\right ) \left (\csc \left (\frac{1}{4} (c+d x)\right )+\sec \left (\frac{1}{4} (c+d x)\right )\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^2*Sqrt[a + a*Sin[c + d*x]],x]

[Out]

(Csc[(c + d*x)/2]^4*Sqrt[a*(1 + Sin[c + d*x])]*(-4*Cos[(c + d*x)/2] + 2*Cos[(3*(c + d*x))/2] + 4*Sin[(c + d*x)
/2] - Log[1 + Cos[(c + d*x)/2] - Sin[(c + d*x)/2]]*Sin[c + d*x] + Log[1 - Cos[(c + d*x)/2] + Sin[(c + d*x)/2]]
*Sin[c + d*x] + 2*Sin[(3*(c + d*x))/2]))/(d*(1 + Cot[(c + d*x)/2])*(Csc[(c + d*x)/4] - Sec[(c + d*x)/4])*(Csc[
(c + d*x)/4] + Sec[(c + d*x)/4]))

________________________________________________________________________________________

Maple [A]  time = 0.865, size = 125, normalized size = 1.4 \begin{align*}{\frac{1+\sin \left ( dx+c \right ) }{\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) d}\sqrt{-a \left ( \sin \left ( dx+c \right ) -1 \right ) } \left ( \sin \left ( dx+c \right ) \left ( 2\,\sqrt{a-a\sin \left ( dx+c \right ) }{a}^{3/2}-{\it Artanh} \left ({\sqrt{a-a\sin \left ( dx+c \right ) }{\frac{1}{\sqrt{a}}}} \right ){a}^{2} \right ) -\sqrt{a-a\sin \left ( dx+c \right ) }{a}^{{\frac{3}{2}}} \right ){a}^{-{\frac{3}{2}}}{\frac{1}{\sqrt{a+a\sin \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*csc(d*x+c)^2*(a+a*sin(d*x+c))^(1/2),x)

[Out]

(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)*(sin(d*x+c)*(2*(a-a*sin(d*x+c))^(1/2)*a^(3/2)-arctanh((a-a*sin(d*x+c)
)^(1/2)/a^(1/2))*a^2)-(a-a*sin(d*x+c))^(1/2)*a^(3/2))/sin(d*x+c)/a^(3/2)/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a \sin \left (d x + c\right ) + a} \cos \left (d x + c\right )^{2} \csc \left (d x + c\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^2*(a+a*sin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a*sin(d*x + c) + a)*cos(d*x + c)^2*csc(d*x + c)^2, x)

________________________________________________________________________________________

Fricas [B]  time = 1.77692, size = 749, normalized size = 8.42 \begin{align*} \frac{{\left (\cos \left (d x + c\right )^{2} -{\left (\cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right ) - 1\right )} \sqrt{a} \log \left (\frac{a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - 4 \,{\left (\cos \left (d x + c\right )^{2} +{\left (\cos \left (d x + c\right ) + 3\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 3\right )} \sqrt{a \sin \left (d x + c\right ) + a} \sqrt{a} - 9 \, a \cos \left (d x + c\right ) +{\left (a \cos \left (d x + c\right )^{2} + 8 \, a \cos \left (d x + c\right ) - a\right )} \sin \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} +{\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1}\right ) - 4 \,{\left (2 \, \cos \left (d x + c\right )^{2} +{\left (2 \, \cos \left (d x + c\right ) + 3\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 3\right )} \sqrt{a \sin \left (d x + c\right ) + a}}{4 \,{\left (d \cos \left (d x + c\right )^{2} -{\left (d \cos \left (d x + c\right ) + d\right )} \sin \left (d x + c\right ) - d\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^2*(a+a*sin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/4*((cos(d*x + c)^2 - (cos(d*x + c) + 1)*sin(d*x + c) - 1)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2
 - 4*(cos(d*x + c)^2 + (cos(d*x + c) + 3)*sin(d*x + c) - 2*cos(d*x + c) - 3)*sqrt(a*sin(d*x + c) + a)*sqrt(a)
- 9*a*cos(d*x + c) + (a*cos(d*x + c)^2 + 8*a*cos(d*x + c) - a)*sin(d*x + c) - a)/(cos(d*x + c)^3 + cos(d*x + c
)^2 + (cos(d*x + c)^2 - 1)*sin(d*x + c) - cos(d*x + c) - 1)) - 4*(2*cos(d*x + c)^2 + (2*cos(d*x + c) + 3)*sin(
d*x + c) - cos(d*x + c) - 3)*sqrt(a*sin(d*x + c) + a))/(d*cos(d*x + c)^2 - (d*cos(d*x + c) + d)*sin(d*x + c) -
 d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*csc(d*x+c)**2*(a+a*sin(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^2*(a+a*sin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Exception raised: TypeError